www.design-reuse-embedded.com
Find Top SoC Solutions
for AI, Automotive, IoT, Security, Audio & Video...

Intel's Latest FinFET Is Key to Its Foundry Plans

Company's new process signals transition toward foundry service provider

spectrum.ieee.org, Jun. 25, 2024 – 

Last week at VLSI Symposium, Intel detailed the manufacturing process that will form the foundation of its foundry service for high-performance data center customers. For the same power consumption, the Intel 3 process results in an 18 percent performance gain over the previous process, Intel 4. On the company's roadmap, Intel 3 is the last to use the fin field-effect transistor (FinFET) structure, which the company pioneered in 2011. But it also includes Intel's first use of a technology that is essential to its plans long after the FinFET is no longer cutting edge. What's more, the technology is crucial to the company's plans to become a foundry and make high-performance chips for other companies.

Called dipole work-function metal, it allows a chip designer to select transistors of several different threshold voltages. Threshold voltage is the level at which a device switches on or off. With the Intel 3 process, a single chip can include devices having any of four tightly-controlled threshold voltages. That's important because different functions operate best with different threshold voltages. Cache memory, for example, typically demands devices with a high threshold voltage to prevent current leakage that wastes power. While other circuits might need the fastest switching devices, with the lowest threshold voltage.

Threshold voltage is set by the transistor's gate stack, the layer of metal and insulation that controls the flow of current through the transistor. Historically, "the thickness of the metals determines the threshold voltage," explains Walid Hafez, vice president of foundry technology development at Intel. "The thicker that work function metal is, the lower the threshold voltage is." But this dependence on transistor geometry comes with some drawbacks as devices and circuits scale down.

Small deviations in the manufacturing process can alter the volume of the metal in the gate, leading to a somewhat broad range of threshold voltages. And that's where the Intel 3 process exemplifies the change from Intel making chips only for itself to running as a foundry.

Click here to read more...

 Back

Partner with us

List your Products

Suppliers, list and add your products for free.

More about D&R Privacy Policy

© 2024 Design And Reuse

All Rights Reserved.

No portion of this site may be copied, retransmitted, reposted, duplicated or otherwise used without the express written permission of Design And Reuse.